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1. Introduction 

MatCHMaker

1

 was awarded a grant under the call HORIZON-CL4-2022-RESILIENCE-01-19 

2

 - 

Advanced materials modelling and characterisation (RIA) as the future of European industrial 

manufacturing requires further advances in characterisation methods and computational modelling. 

This will lead the way to the reliable design of new and sustainable materials and processes, rapid 

upscaling, and effective quality control. These advances can only be achieved through the 

development of innovative techniques and a new generation of instrumentation, responding to 

industrial needs. MatCHMaker and its sister projects AddMorePower,

3

 AID4GREEENEST,

4

 CoBRAIN,

5

 

and D-STANDART

6

 introduce their approach to this topic. 

In this report, we provide a first insight on each of these projects as presented in our joint online 

workshop “Advances in characterisation methods and computational modelling”. (see Appendix) The 

presenters selected a particular industrial challenge (use case) and introduced their approach on how 

to advance characterisation methods and materials modelling, respectively.  

2. The Needs of Industry and the Solutions 

Provided 

The first use case of the project MatCHMaker turned the attention to cement and how this product 

can be optimised. Industry is looking to reduce CO

2

 emissions and for low-carbon binders. To 

decrease its CO

2

 emission, the cement of today is already substituted with Supplementary 

Cementitious Materials (SCM) which are wastes of other industries like: fly ashes and ground 

granulated blast furnace slags (GGBS). As the EU is on its road to decarbonizing its industries, coal 

power plants will progressively shut down and the steel industry is changing its processes; this will 

lead to shortage of fly ashes and GGBS. Among new SCM, calcined clays and limestone are among 

the most abundant. However, the amounts of each material have to be optimized to minimize CO

2

 

while keeping durability and mechanical performance identical to current products. It is important 

to understand the microstructure since the usage of low-carbon binders will have different phase 

assemblages which in turn influences the macroscopic properties. Conventional X-ray diffraction 

(XRD) is not sufficient as it only measures precisely the amount of crystalline phases and does not 

recognise porosity. In MatCHMaker’s approach, scanning electron microscopy (SEM) and 

Transmission Electron Microscopy (TEM) are used to identify and quantify the amount of each phase, 

i.e., areas of the microstructure with similar element composition. During SEM, the backscattered 

electrons (BSEs) are analysed, so one can characterise deeper regions of a sample. Energy-Dispersive 

X-ray Spectroscopy (EDX) is harnessed to obtain the chemical composition.  

However, the raw images obtained with SEM and EDX must be processed to identify and quantify 

the relevant phases that characterise the cement paste. A dedicated processing workflow, depicted 

in Figure 1, has been developed to perform this analysis, combining Machine Learning (ML) 

approaches and expert’s knowledge. The first step of this workflow consists in the clustering of the 

 

1

 https://cordis.europa.eu/project/id/101091687  

2

 https://cordis.europa.eu/programme/id/HORIZON_HORIZON-CL4-2022-RESILIENCE-01-19/en  

3

 https://cordis.europa.eu/project/id/101091621  

4

 https://cordis.europa.eu/project/id/101091912  

5

 https://cordis.europa.eu/project/id/101092211  

6

 https://cordis.europa.eu/project/id/101091409  
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pixels into the main phases in a Portland cement: pores, hydrates, portlandite and clinker. A second 

step of the workflow focuses on the clinker to obtain a more detailed phase identification (alite, 

belite, celite, ferrite).  

 

Figure 1. General workflow for the analysis of SEM and EDX images of cement paste 

An example of the final result is illustrated in Figure 2. Future work will exploit the uncertainty 

prediction of the ML models and their propagation to the phase quantification. 

 

Figure 2. Left: Example of a layered image of Portland cement (2 days). Right: Result of the clustering result using the 

developed workflow 

One of the main challenges of this approach is its full automation. Currently, expert’s input is needed 

to provide an initial guess for ML algorithms. These inputs depend on the image, their acquisition 

condition (contrast, saturation) and the expected phases to recognise in the sample (presence of 

limestone, calcined clay, …). As the number of images is expected to be vast, building a seamless 

workflow will rapidly appear as a necessity. 

The challenge for MatCHMaker is to translate a human expert’s knowledge into data a machine can 

correctly process. This data-driven method comes with the necessity to store meaningful data, of 

which many may be proprietary. The cement manufacturers will profit from this novel 

characterisation workflow as it enables them to analyse low-carbon binders and understand the 

microstructures fast. 

 

The Need: Low-carbon binders characterization for the building sector. 

The Solution: A seamless robust processing workflow for SEM and TEM images using ML to 

understand the microstructure in depth as opposed to time-consuming and subjective manual image 

analysis. 
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AID4GREENEST is investigating Artificial Intelligence (AI) assisted characterisation workflows to 

characterise advanced steels. They are using SEM techniques such as Electron Backscatter Diffraction 

(EBSD) and Secondary Electron imaging (SE). The ultimate goal will be to populate an open 

repository, MicrostructureDB,

7

 where users can explore the microstructure space and find links 

between the structure, processing and properties of steel. The database will support different privacy 

levels to accommodate industrial users. Advanced AI tools will aid to explore, organise, and make 

predictions for user’s own datasets. The idea is to create maps of metal where similar images cluster 

together and different materials are located in spatially separated clusters. The maps are constructed 

from advanced deep learning models both from labelled and unlabelled data. A useful test data set 

for this development was the UltraHigh Carbon Steel micrograph DataBase (UHCSDB).

8

 An overview 

of the workflow is depicted in Figure 3. 

 

 

Figure 3. Workflow of the AID4GREENEST methodology 

Working with AI-assisted characterisation raises the issue whether enough real data is available; often 

data are sparse and expensive to obtain. Also, the diversity of available material data is limited which 

is not beneficial in the quest for novel and advanced materials for the steel industry. This is where 

synthetic data created by AI can play a role as filling in the knowledge gaps; however, they must 

ultimately correlate to a physical reality. Microstructures of steels are complex and require novel 

characterisation workflows. The steel industry will profit from guidance of which process parameters 

they have to tweak to get the desirable microstructures and thus, a better steel. 

 

The Need: Manufacturing of advanced steels to keep up with contemporary market needs. 

The Solution: An open repository with experimental and modelling data and AI tools to assist the 

knowledge search as opposed to siloed information with low data interoperability. 

 

AddMorePower attempts to develop advanced characterisation workflows for the power electronics 

industry. Copper metallisation is a process that uses copper to improve the performance and 

reliability of power electronic devices. However, such devices are exposed to high currents and 

frequencies which may cause cracks and subsequently lead to failure. A synchrotron-based X-ray 

microscope is used to understand the thermomechanical fatigue processes that incur in copper. As 

these processes are multi-scale and multi-physics events, Dark-field X-ray microscopy (DFXM) is used 

as an imaging technique. AddMorePower (Figure 4) is using the experimental structures obtained 

 

7

 https://microstructuredb.com/  

8

 https://holmgroup.github.io/publications/uhcs-data.pdf  
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from characterisation as an input for the Düsseldorf Advanced Material Simulation Kit (DAMASK) 

9

 

with the goal to elucidate the degradation mechanisms and approach life-time modelling. Their data 

is managed with NOMAD Oasis 

10

 and they develop parsers and require programming skills for their 

digital threads.  

 

Figure 4. AddMorePower deeply integrates X-ray and Electron probe microscopy techniques (Objective 1) with materials 

modelling (Objective 2). To successfully enable this, an intensive data management is necessary (WP2). Applied are these 

characterisation-modelling workflows for power electronics copper metallisation structures as well as wide bandgap 

semiconductors 

These characterisation workflows do require expert knowledge and cannot be wrapped up in user-

friendly apps in the near future. However, Europe harbours these experts and some industrial 

challenges can only be tackled with ingenuity rather than routine, especially when it comes to 

multiscale characterisation and modelling. The instruments comprised in a synchrotron setting are 

on a high technology readiness level (TRL) and can be democratised, i.e., made accessible to persons 

who wish to engage with more challenging characterisation settings. 

 

The Need: Increase the performance and reliability of power electronic devices. 

The Solution: Bring complex characterisation and modelling workflows to live by making them 

accessible to experts and lift them off the drawing board.  

 

The CoBRAIN project focus is on the innovation in coatings that various industry sectors need to 

prevent corrosion and combat wear. It is of interest to replace strategic and toxic elements such as 

cobalt, or processes employing toxic compounds like chromium electroplating. Coatings must 

perform often under extreme environmental conditions and ideally, be made from sustainable and 

“green” materials. The interoperability of data obtained from physical models, numerical models and 

characterisation is at the core of the selection and development criteria for new materials, optimised 

for each working environment. Characterisation methods must cover the nano-micro-meso scale, be 

correlated with performance indicators, and give a clear picture of the coatings structure and this, 

 

9

 https://damask-multiphysics.org/  

10

 https://nomad-lab.eu/nomad-lab/nomad-oasis.html  
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ideally very fast. The methods of choice (Figure 5) for CoBRAIN are multi-technique High Speed 

Nano-indentation and scratch testing, wear testing (sliding, abrasion, etc.) and electrochemical 

corrosion testing, combined with high-resolution microscopies (e.g. SEM, EBSD, FIB+TEM), X-ray 

diffraction, and spectroscopies (e.g. micro-Raman).  

 

 

Figure 5. Main idea at the basis of CoBRAIN’s project 

The partners are also using physics-based materials modelling combined with ML. The alloys are 

designed in-silico and novel chemistries can be researched. Multiple computational methods, 

including Computer Coupling of Phase Diagrams and Thermochemistry (CalPhaD), Density-

Functional Theory (DFT), Computational Fluid-Dynamics (CFD) and Finite Element (FE) methods, are 

employed to model the coatings’ properties and the materials evolution during the thermal spray 

process. ML models are then be used to augment the physics-based data to obtain a large dataset 

and to correlate them with experimental data. Ontologies are used to guarantee semantic 

interoperability among all experimental and theoretical workflows. The outcome will be a link 

between process data gathered in the project and the materials performances to carry out a Life 

Cycle Performance Assessment (LCPA) and thus enable a Sustainable Decision Support System 

(SDSS). 

The Need: Wear and corrosion protective ceramic/metal coatings comprising less toxic and more 

abundant elements. 

The Solution: To design dedicated material solutions for industries using ontologies to guarantee 

semantic interoperability between state-of-the-art characterisation, materials modelling and ML 

methods. 
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Composite structures in the aerospace and renewable energy industries are the topic of project D-

STANDART. Composites are seen as crucial materials for a sustainable future; however, they must be 

reliable during and ideally beyond the lifetime of the product. This requires careful evaluation of their 

fatigue performance. Fatigue testing of composites is very time consuming, since each possible lay-

up in a design has to undergo the full cycle from coupon to full-scale testing. Hence if the 

manufacturers could reduce the number of tests without compromising on safety, the time to market 

could be reduced. Currently this issue is solved by only qualifying a small set of lay-ups, and 

restricting designers to only pick lay-ups from this set. This severely restricts the material design 

space, and sacrifices one of the key advantages of composites: that the lay-up can be optimally 

tailored to the applied loads. To address this issue, D-STANDART proposes a combination of new 

experimental methodologies for characterising composite laminates, combined with AI-based 

surrogate modelling (Figure 6).  

 

 

Figure 6. Workflow of the D-STANDART methodology for fatigue evaluation 

Experimental data are used to validate high fidelity mesoscale models. These models are then used 

to create synthetic data, which are the basis for the training of surrogate models that can capture 

the complexities of the composite material. These surrogate models can then be integrated into 

numerical analyses of full-scale structures, providing insight into the expected fatigue performance, 

at comparatively low computational cost. The whole process is geared towards providing confidence 

in the product’s durability to the manufacturer from the start. To further build confidence in the final 

predictions, and to support digital product certification in a future industrial environment, D-

STANDART is developing a digital thread that facilitates the data exchange and maintains traceability 

throughout the workflows. 

 

The Need: Sustainable composites for the aerospace and renewable energy industries. 

The Solution: AI-based surrogate modelling to enable evaluation of composite structures with 

arbitrary lay-ups, supported by a digital thread to connect experiments, surrogate models and life 

cycle predictions, with full traceability. 
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3. Conclusions and Outlook 

The five projects cover a wide range of industries and application, and give evidence that workflows 

comprising both characterisation and modelling data are key on the path to develop advanced 

materials. ML and AI play a big role in aiding the human-in-the-loop with uncovering the knowledge 

that is distributed in the available data. The human-in-the-loop plays a big role to provide data in 

ML/AI ready format and assures that ML/AI is learning the right things. The concept of digital threads 

will be important so the process of how data were collected becomes transparent and FAIR.  

Advances in Characterisation Methods and Computational Modelling will require that practitioners 

meet in a pre-competitive way and share best practises. Ideally, they agree on data formats and make 

data available to enlarge the learning space for ML/AI. The latter are software and require verification 

and validation to be trustworthy. Also here, developers may want to share best practises and 

procedures where the reliability can be confirmed. 

All five projects have impressive case studies and will deliver a proof of concept for their respective 

methods; however, to establish a workflow in industry will require a manufacturer to add it to their 

existing roadmap

11

 and make it part of their process from a managerial perspective. Hence, the 

projects aim to clearly demonstrate value, so industry may be open to adopt new workflows. 

Hence, our cluster of projects is looking forward to become an enabler for industry to use novel 

characterisation and modelling workflows to take advantage of it and advance materials for the 

common benefit. 
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6. Acronyms, Abbreviations and Elucidations 

AI – Artificial Intelligence 

BSE - backscattered electron 

CFD - Computational Fluid-Dynamics 

DAMASK - Düsseldorf Advanced Material Simulation Kit 

DFT – Density Functional Theory 

DFXM - Dark-field X-ray microscopy 

EBSD - Electron Backscatter Diffraction 

EDX - Energy-Dispersive X-ray Spectroscopy 

FE - Finite Element 

GGBS - granulated blast furnace slags 

LCPA - Life Cycle Performance Assessment  

ML – Machine Learning 

SCM - Supplementary Cementitious Materials 

SDSS - Sustainable Decision Support System 

SEM - Scanning Electron Microscopy 

TEM - Transmission Electron Microscopy 

TRL - technology readiness level 

UHCSDB - UltraHigh Carbon Steel micrograph DataBase 

XRD - X-ray diffraction 

 

7. Appendix 

The meeting was facilitated by the EMMC and took place online, 24

th

 Oct 2024, 1-5pm CET. 

Time/CET Speaker Topic 

1.00 – 1.05 Ludovic Jason 

MatCHMaker 

 

Welcome, setting the scene  

1.05 – 1.35 Alexandre Ouzia (Heidelberg 

Materials, D) and Geoffrey 

Daniel (CEA, F) 

MatCHMaker 

 

“ML model for phase assemblage 

analysis of low carbon cement pastes” 

1.35 -2.05 Rina Jaeken (ePotentia, B) 

AID4GREENEST 

“Computer vision insights from the 

development of MicrostructureDB” 
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2.05 – 2.35 Andre Clausner (Fraunhofer 

IKTS, D) 

AddMorePower 

 

“Advanced Characterisation and 

Modelling for Degradation Processes in 

Copper BEoL Stacks of next generation 

Power Devices” 

2.35 – 3.05 Anssi Laukkanen (VTT, FI) and 

Marco Sebastiani (University 

Roma Tre, I) 

CoBrain 

 

"Combining physical modelling, artificial 

intelligence, and experimental 

verification for the development of 

sustainable coating materials based on 

high-entropy alloys". 

3.05 – 3.15 Break  

3.15 - 3.45 John-Alan Pascoe (TU Delft, 

NL) 

D-Standart 

 

“More efficient fatigue evaluation of 

composite structures by leveraging 

machine learning and surrogate 

modelling” 

3.45 – 4.30 Open Discussion  

 

 


