

Interoperable CHADA: A Semantic Approach for Managing and Exploiting Characterization Data and Protocols

Yoav Nahshon On behalf of the AID4GREENTST Consortium

MatCHMaker workshop, 07.04.2025

AID4GREENEST

AID4GREENEST

Revolutionizing Steel Manufacturing with AI & Digitalization

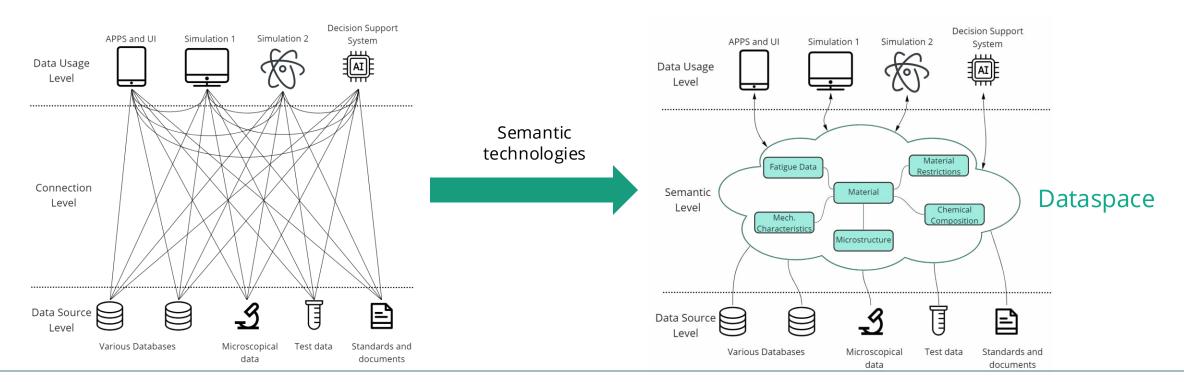
Al powereD characterization and modelling for GREEn STeel technology

- Challenges in traditional steel production:
 - High costs, inefficiencies, and material waste due to trial-and-error methods
- AI-Powered Transformation:
 - Al-driven tools optimize steel design, processing, and performance for faster, smarter, and greener manufacturing.
- Key Impact:
 - Reduced material waste & emissions
 - Al-powered process optimization
 - Standardized & interoperable data management
 - Enhanced sustainability in steel production

AID4GREENEST

Task 5.1 - Standardizing Documentation & Workflows

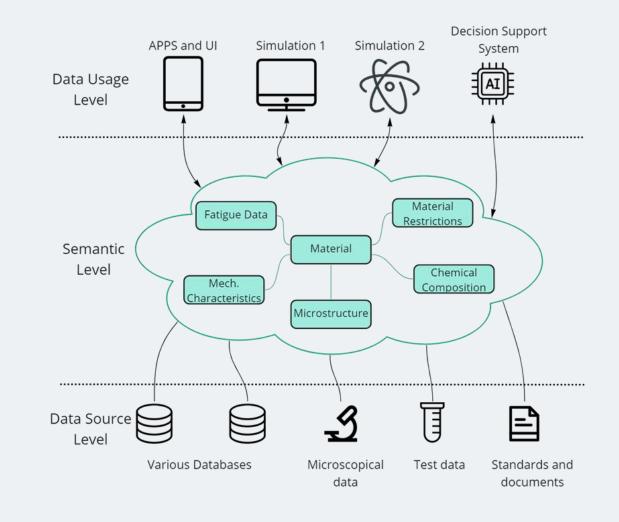
- Challenges:
 - Lack of structured documentation for experiments
 - Inconsistent workflows lead to poor reproducibility
- Absence of standardized metadata affects knowledge sharing
- Objectives of Task 5.1
 - Collect and unify experimental data across project partners
 - Standardize and assist documentation using CHADA (Characterization) & MODA (Modeling)
 - Ensure metadata completeness for reproducibility
 - Create a shared vocabulary to standardize terminology across domains
- Key tools developed
 - **Vocabulary manager:** Standardized repository for terminology & metadata attributes
 - **Process editor digital tool:** Web app for documenting processes in a FAIR manner.
 - Particularly: characterization workflow in accordance with the CHADA guidelines
 - https://www.cencenelec.eu/media/CEN-CENELEC/CWAs/RI/2025/cwa17815_2025.pdf



Semantics management

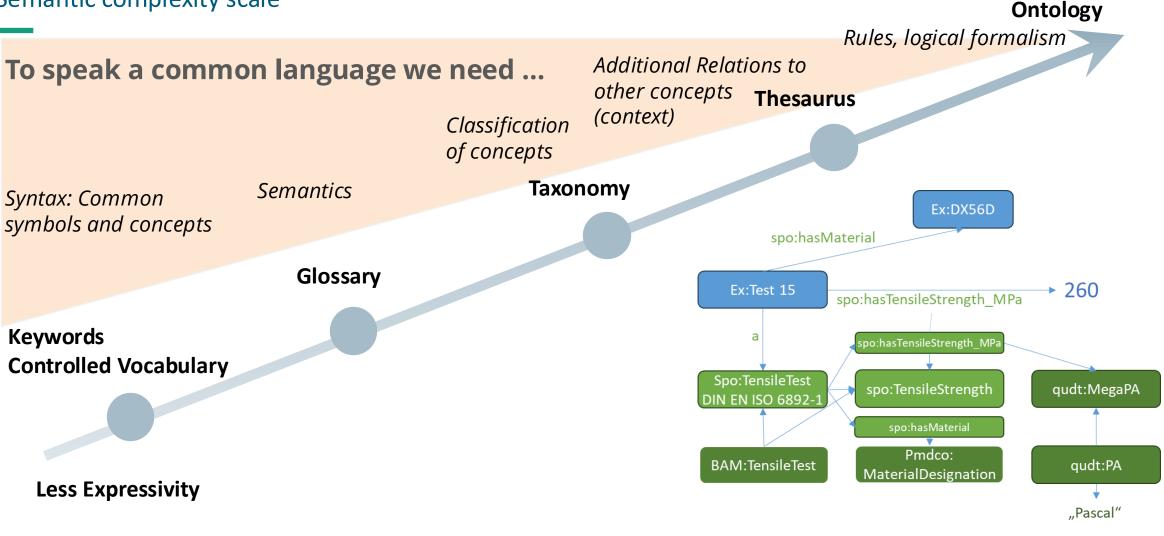
The importance of FAIR data management for SMEs What is FAIR data and why it is important

- FAIR: Findable, Accessible, Interoperable, Reusable
- Often data is stored in file structures or relational databases within an organization \rightarrow not FAIR



Data-driven solutions with FAIR data Strengths

- Interoperability enables seamless communication
- Full data access fosters deeper insights and better decisions
- Less data conversion streamlines processes and boosts efficiency
- FAIR data is AI-ready

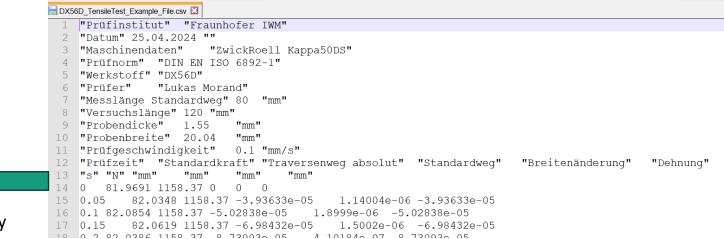


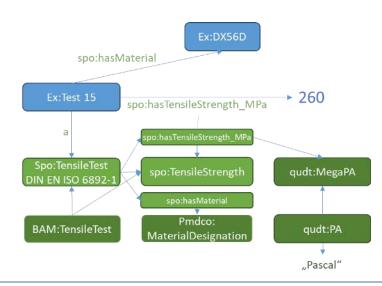
Semantic technologies for FAIR data management Knowledge graphs

Information is linked and stored in a knowledge graph Component XY Every term is unique and defined, e.g. composedOf Tensile Test Analysis URI: http://qudt.org/vocab/unit/PERCENT generated Description characteristicOf PET "Percent" is a unit for 'Dimensionless Ratio' expressed as %. Human and machine readable Elongation hasValue But: Working with semantic technologies is challenging hasUnit 27.11 qudt:PERCENT

Semantic technologies for FAIR data management Semantic complexity scale

Semantic technologies for FAIR data management Approaches


Different development philosophies :


- Top-down: from generic to specific
- Bottom-up: from the practical to the more general
- Middle-Out: start in the middle and add where necessary

Various tools:

- Protégé / WebProtégé
- Chowlk / RDF Diagram Framework
- Metafactory, Corporate Memory, GraphDB, AllegroGraph, Virtuoso, PoolParty, ...
- Xlsx2owl
- Vocabulary manager

Ontology development approaches Top-down

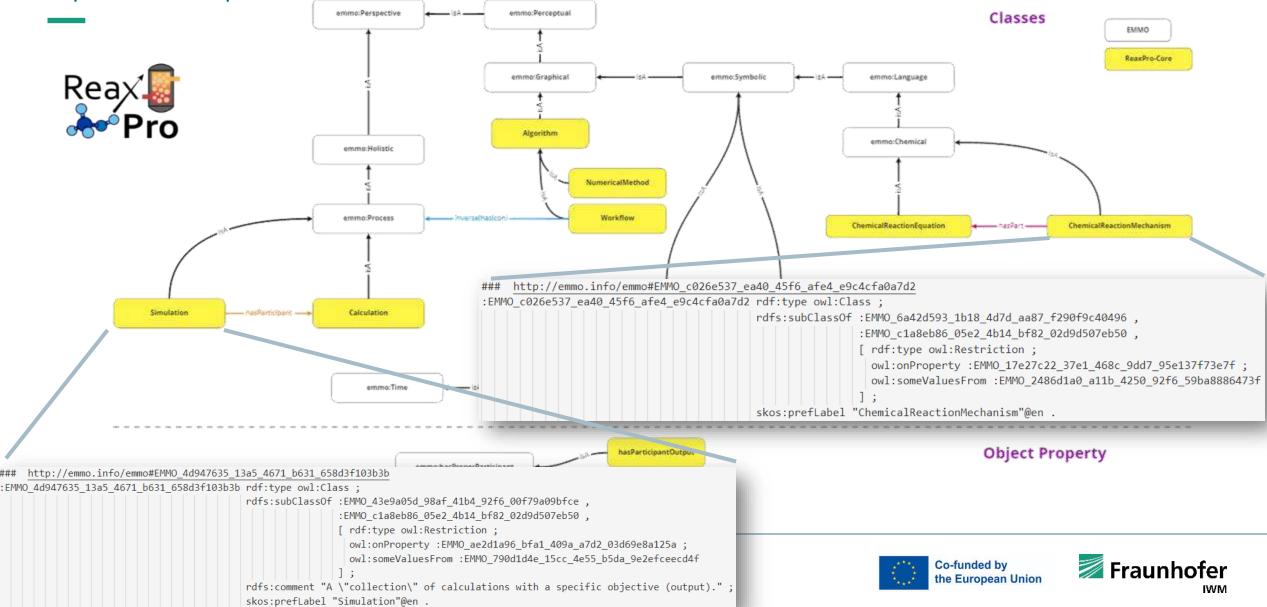
Start from broad, high-level concepts and progress to more specific details

Process:

Define the most generic concepts, such as "Entity" or "Object."

Gradually refine these concepts into increasingly detailed subclasses or properties.

Ensure consistency and logical relationships between levels.


Develop	ment	Express	sivity

Ontology development approaches

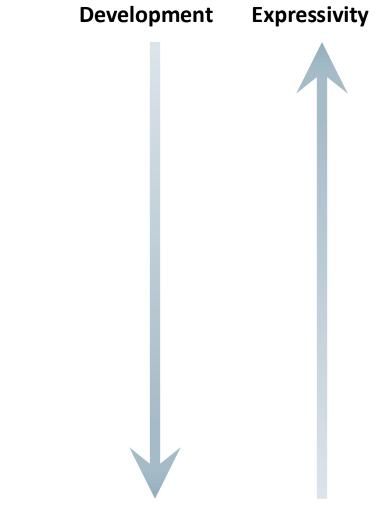
Top down: Example

Ontology development approaches Top-down: Trade-off analysis

Challenges:

Time-to-application: Takes typically half a year until practical use of the application is being reached

Technoligcal barrier: Requires ontology experts

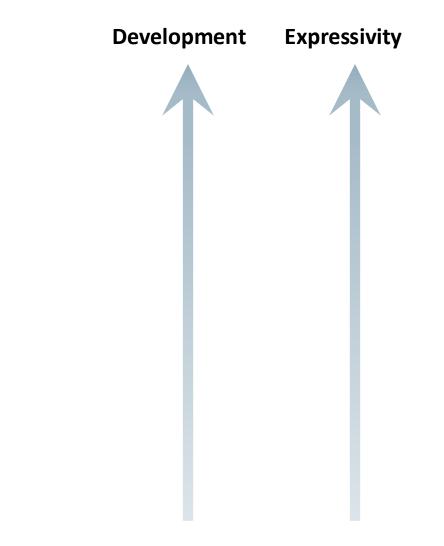

Development time: No parallel work; long iteration cycles between ontology experts and domain experts

Advantages:

Ensures a well-structured, hierarchical foundation, consistent with a particular framework

Provides a comprehensive, global perspective

Encourages reusability of ontology for various domains

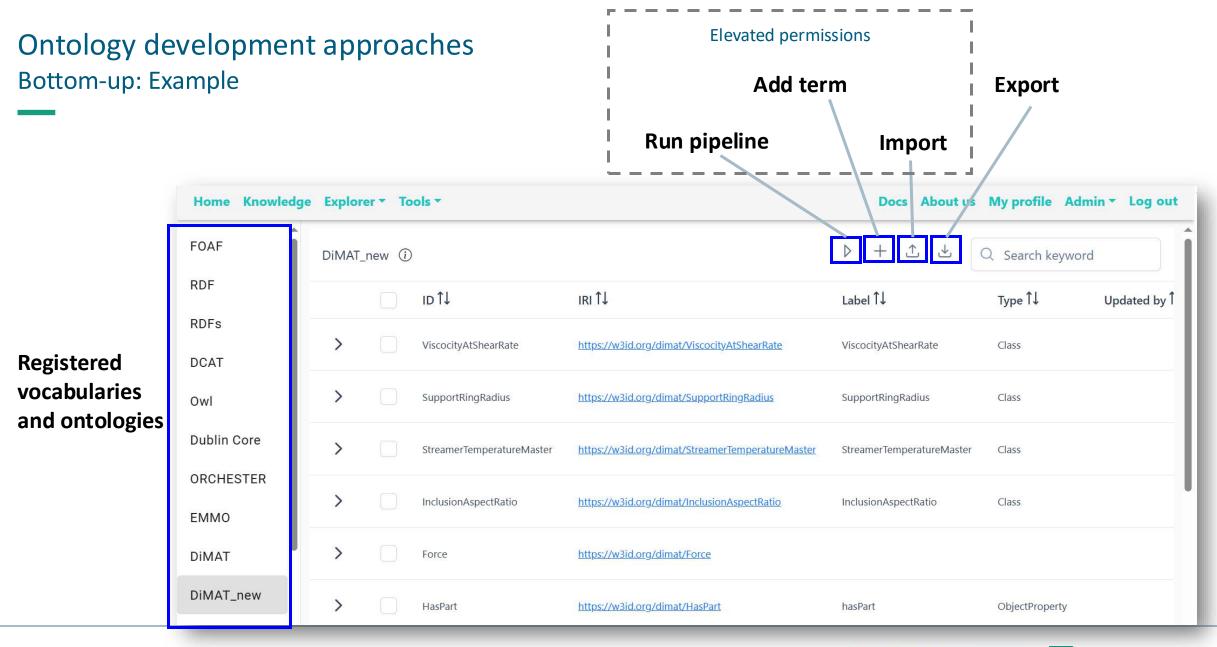


Ontology development approaches Bottom-up

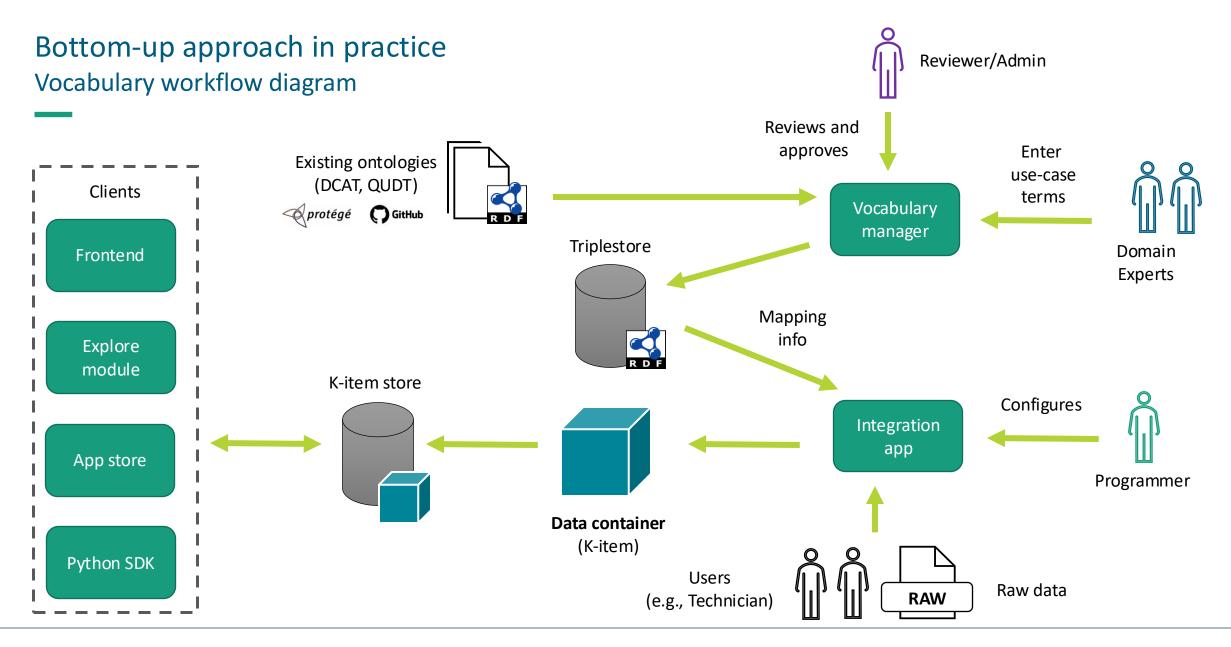
Begin with specific, detailed concepts or instances and generalize to broader categories

Process:

- Identify real-world data, examples, or use cases
- Organize these instances into classes and relationships
- Generalize and abstract broader categories from the specifics.


Ontology development approaches Bottom-up: Example

ID	Label	Туре	Description	Comment
SpinneretCapillaries	SpinneretCapillaries		Number of capillaries found in the	
			spinneret, equal to the number of	
			filaments of the yarn obtained	
		http://www.w3.org/2002/07/owl		
SpinneretCapillariesDiameter	SpinneretCapillariesDiameter		Diameter of the capillaries found	
		http://www.w3.org/2002/07/owl	in the spinneret	
SpinneretCapillariesLengthToDiameterRatio	${\tt SpinneretCapillariesLengthToDiameterRatio}$		Ratio between the lenght and the	L/D
			diameter of the capillaries found	
		http://www.w3.org/2002/07/owl	in the spinneret	
SpinPackMeshSize	SpinPackMeshSize		Pore size of the wire mesh in the	
			filter in micrometers. Indicates	
			the smallest particle that can pass	
		http://www.w3.org/2002/07/owl	through the filter.	
SpinPackSandBedDepth	SpinPackSandBedDepth		Vertical depth of the sand bed in	
			centimeters. Indicates the height	
			of the sand column used in the	
		http://www.w3.org/2002/07/owl	filter	
SpinPackSandGrainSize	SpinPackSandGrainSize		Diameter of the individual grains	
		http://www.w3.org/2002/07/owl	of sand	
SpinPackTemperature	SpinPackTemperature		Temperature of the SpinPack	
		http://www.w3.org/2002/07/owl		
PumpSpeed	PumpSpeed	http://www.w3.org/2002/07/owl	speed of the pump	2,92cm3/rpn
EvtrudarSpaad	EvtruderSpeed		sneed at which the extruder	



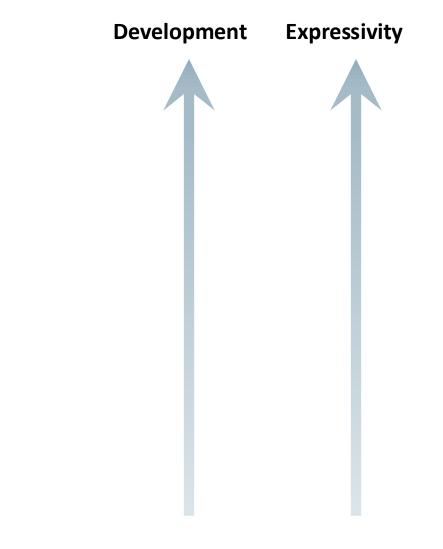
Ontology development approaches Bottom-up: Trade-off analysis

Advantages:

Agile development: Application development is reached very fast; updates are done on the fly

Reduces bottlenecks by breaking down complexity into modules \rightarrow The user is independent

Improves transparency in the system as vocabularies as more easily understandable than ontologies


Challenges:

Results in duplications and inconsistencies \rightarrow Requires quality control

Requires effort to align with upper level ontologies

Lacking the necessary tools and modules

Delegates vocabulary managements to users, which need to be guided

Bottom-up approach in practice Upcoming CWA

CEN Workshop: Vocabulary definition for domain ontologies in materials science and manufacturing

- <u>Scope</u>: CWA to outline a guideline and workflow for identifying and defining terminology related to materials science applications, aimed at facilitating the creation of a domain ontology
- <u>Motivation</u>: Address the challenge of inaccessible heterogeneous data by promoting FAIR data management.
- <u>Bottom-up ontology creation</u>: Facilitates practical application and relevant term identification.
- <u>Aim of CWA</u>: Establish guidelines for defining terminology in application ontologies within materials science.
- <u>Overall goal</u>: Enable consistent and effective development of application ontologies to enhance interoperability.

Take-home message Semantics management

Top-down:

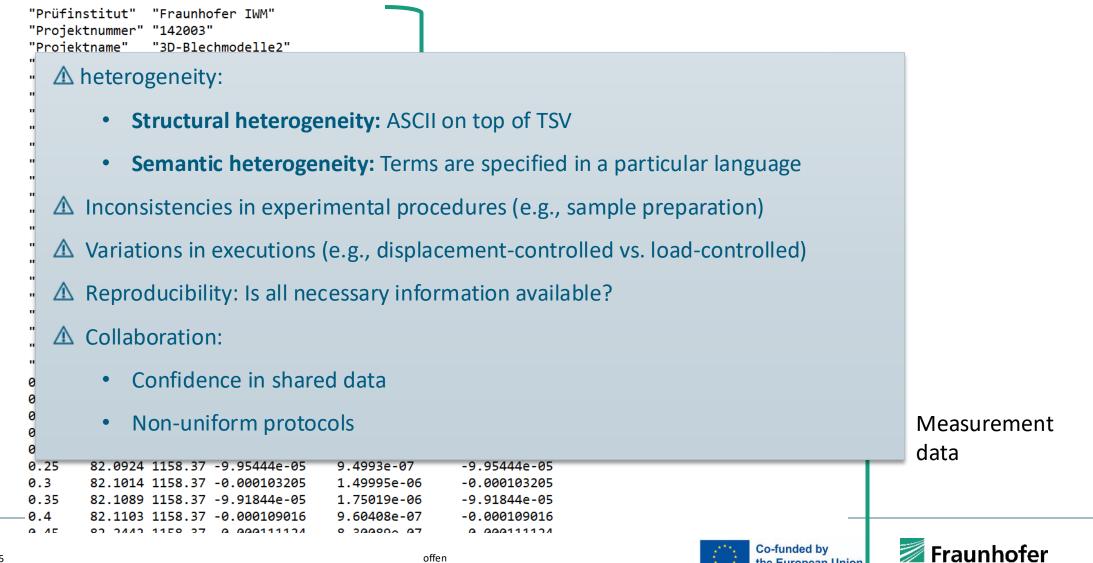
- Usually long iteration cycles between ontology experts and domain experts
 - → Often creates bottleneck, can hinder progress and demotivate end uses
- 👍 Ensures a well-structured, hierarchical foundation, consistent with a particular framework

Bottom up:

- ightarrow Introduces duplicates and inconsistencies ightarrow Requires a review process (automation, via NLP / LLMs)
- Fast/agile that delegates the tasks to domain experts
 - → But experts need guidance (CWA) and tools (vocabulary manager module)

Vocabulary Manager Tool:

- Collects and organizes vocabulary terms across projects/domains
- Serves as a mapping system for metadata attributes, ensuring consistency


Semantic Representation of Characterization Processes

Challenges in curating characterization data Tensile test example

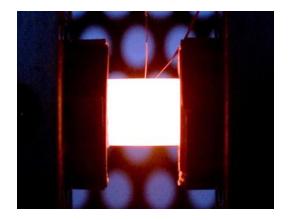
	"Projek" "Datum/" "Maschiu "Krafta "Wegaufu "Prüfno "Prüfer" "Proben "Proben "Proben "Proben "Proben "Proben "Prüfges "Vorkra" "Temper	tnummer" tname" Uhrzeit" nendaten' ufnehmer' nehmer" rm" off" typ" kennung 2 nge Stano hslänge" dicke" breite" schwindig ft" atur"	"3D-Bled "16.04.3 "makroX" "DIN EN "DX56D" "FZ2 (L0 "wes" 2" dardweg" 120 1.55 20.04	" 2016 13: "ZwickF "xForce tens" ISO 689 0=80_b0=	e2" 53" oell Kap K"		– Metadata	(key-value pairs	5)	
	"Bemerke "Prüfze:	-	"Standa	rdkraft'	"Traver	senweg absolut"	"Standardweg" "	Breitenänderung"	"Dehnung"	
	"s"	"N"	"mm"	"mm"	"mm"	"%"			5	
	0	81.9691	1158.37	0	0	0				
	0.05	82.0348	1158.37	-3.9363	3e-05	1.14004e-06	-3.93633e-05			
	0.1	82.0854	1158.37	-5.0283	8e-05	1.8999e-06	-5.02838e-05			Measurement
	0.15	82.0619	1158.37	-6.9843	2e-05	1.5002e-06	-6.98432e-05			Weasurement
	0.2	82.0386	1158.37	-8.7300	3e-05	4.10184e-07	-8.73003e-05			data
	0.25	82.0924	1158.37	-9.9544	4e-05	9.4993e-07	-9.95444e-05			
	0.3	82.1014	1158.37	-0.0001	03205	1.49995e-06	-0.000103205			
	0.35	82.1089	1158.37	-9.9184	4e-05	1.75019e-06	-9.91844e-05			
	0.4	82.1103	1158.37	-0.0001	09016	9.60408e-07	-0.000109016		_	
26.05.2025	0 15	07 7447	1120 27	0 0001	1117/	o pagona at offer	A AAA111174		Co-funded by the European Union	🗾 Fraunhofer

IWM

Challenges in curating characterization data Tensile test example

the European Union

IWM


Benefits of standardized terminology and documentation Motivation

Enhanced data FAIRness

- Making data Findable, Accessible, Interoperable, and Reusable unlocks the value hidden within
- Standardized documentation ensures transparent reporting of parameters and methods
- Common frameworks (e.g., CHADA) enable seamless data exchange

Support for advanced analytics

- Machine-readable documentation aids data mining, AI training, and digital twin development, driving innovation
- Accelerates technology transfer
 - Standard protocols bridge academia and industry, speeding material development and commercialization

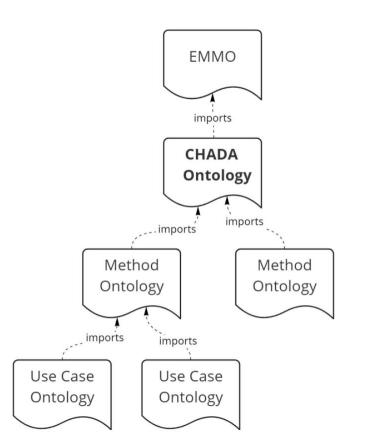
- A framework that provides a standard set of concepts, metadata, and terminology for materials characterization
- Ensures documentation follows a structured, reproducible workflow.
- Covers materials, sample preparation, experimental procedures, and analysis workflows.

	CWA 17815
WORKSHOP	
AGREEMENT	January 2025
ICS 01.040.07; 07.120; 17.020	Supersedes CWA 17815:2021
	English version
Materials character	rization - Terminology and structured documentation
This CEN Workshop Agreement has been drafted constitution of which is indicated in the forewor	d and approved by a Workshop of representatives of interested parties, the rd of this Workshop Agreement.
National Members of CEN but neither the Nation	n the development of this Workshop Agreement has been endorsed by the nal Members of CEN nor the CEN-CENELEC Management Centre can be held I Workshop Agreement or possible conflicts with standards or legislation.

CHADA Introducion

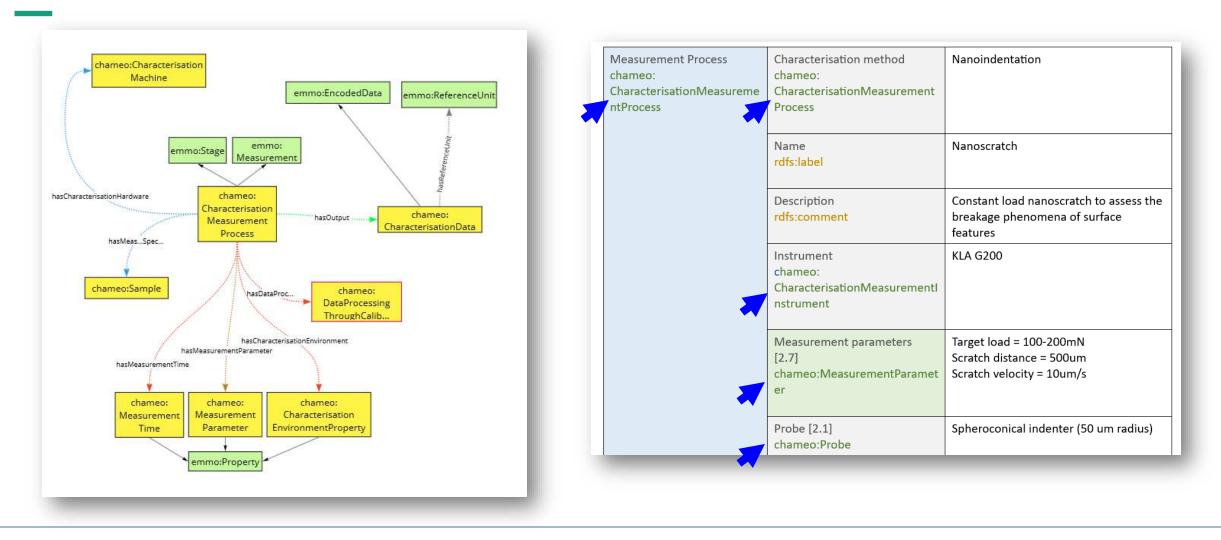
The overall structure of the CHA	DA v2 form is the following:
----------------------------------	------------------------------

- 1. **User case**: A high-level description of the user case, inc there are no details related to the characterisation proc
- 2. Characterisation procedure: An overview on the charac
 - the scientific validation of the approach (if any)
 - o the laboratory and operator (if unique for the v
 - o a link to the BPMN diagram and/or the actual c
- 3. Sample: With the size, description of the physical/chen
- 4. Characterisation procedure steps: They are processes t
 - Sampling process
 - Sample preparation
 - Sample inspection
 - Calibration process
 - Measurement parameters adjustment
 - Measurement process
 - Data normalisation
 - Data filtering
- Data processing
- Data post-processing

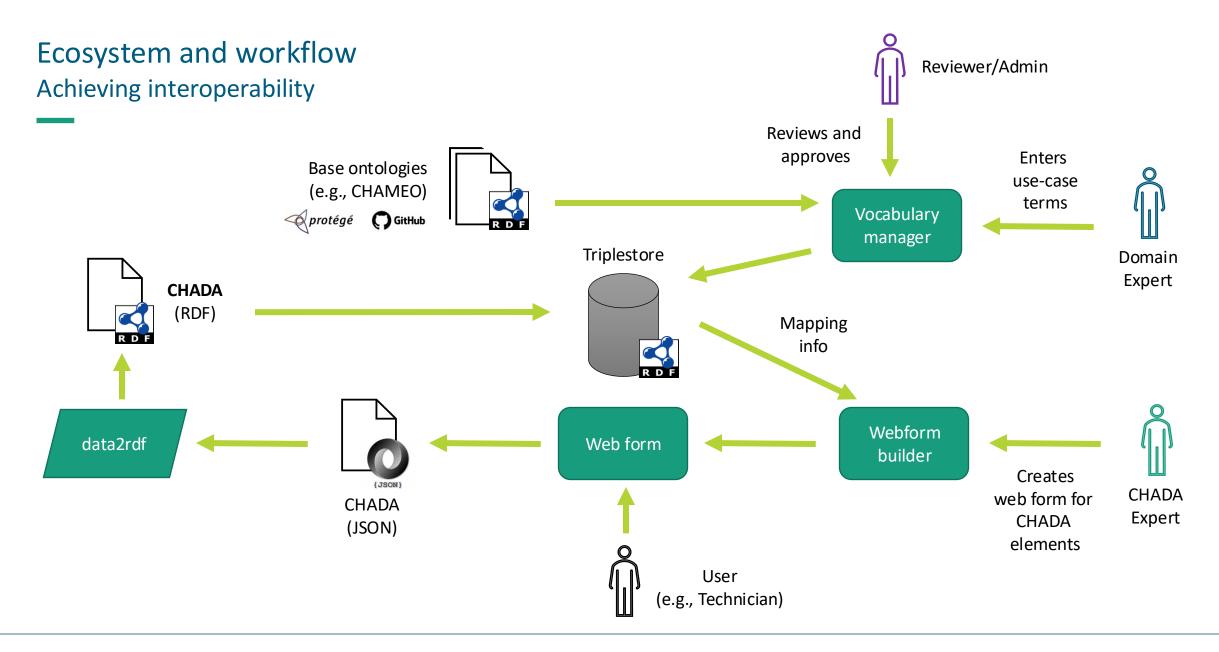

Process onMeasureme	Characterisation method chameo: CharacterisationMeasurement Process	Nanoindentation
	Name rdfs:label	Nanoscratch
	Description rdfs:comment	Constant load nanoscratch to assess the breakage phenomena of surface features
	Instrument chameo: CharacterisationMeasurementI nstrument	KLA G200
	Measurement parameters [2.7] chameo:MeasurementParamet er	Target load = 100-200mN Scratch distance = 500um Scratch velocity = 10um/s
	Probe [2.1] chameo:Probe	Spheroconical indenter (50 um radius)

Measurement chameo: Characterisatio ntProcess CHAMEO An ontology for CHADA

- A domain ontology designed to model the common aspects across the different characterization methodologies
- Based on a recent CEN Workshop Agreement (CWA 17815) which introduced a standardised terminology and the Characterisation Data (CHADA) documentation scheme
- EMMO based, developed under the EMMC Task group "Materials Characterisation Methodology: Domain Ontology"
- Designed from selected industrial cases of NanoMECommons
- Resources:
 - GitHub: <u>https://github.com/emmo-repo/domain-mechanical-testing/tree/modularization</u>
 - Paper: <u>https://doi.org/10.3233/AO-220271</u>
 Del Nostro, P., Goldbeck, G. and Toti, D., 2022. CHAMEO: An ontology for the harmonisation of materials characterization methodologies. *Applied Ontology*.



Modular ontology design

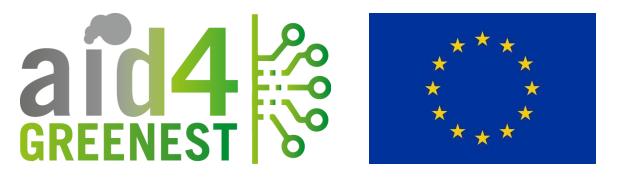


CHAMEO An ontology for CHADA

Vocabulary/Ontology manager Achieving interoperability

2. Enter use-case specific terms

1. Review ontologies and vocabularies in the system					Term editor			
						e.g., 'pressure-level'		
Home Knowledge Explorer Tools T						A unique identifier for	his term. For example, 'pressure-level'.	
					Label *	e.g., Pressure level		
Dublin Core						The name of the term	s it should appear. For example 'Press	ure level'
	CHAME	0			Type *			
FOAF						The type of correspond	ing ontology term.	
		ID ↑≞	IRI ↑↓	Label ↑↓	Description	e.g., Measurement	f heat level in a substance	
RDF						Brief explanation of th	term'e meaning	
					Comment		-	
RDFs	>	Mounting	https://w3id.org/emmo/domain/characterisation-methodology/chameo#Mounting	ng Mounting		e.g., Use only for so	entific contexts	
Owl						Optional notes or addi	onal details	
					Source	e.g., ISO standard		
DCAT	\sim	Nanoindentation	https://w3id.org/emmo/domain/characterisation-methodology/chameo#Nanoindentation N	dentation Nanoindentation		Origin of the term (e.g., book, norm, manual)		
					Author		book, norm, manual)	
EMMO						e.g., Jane Doe		
	Comme			ation (known also as nanoindentation test) is a method for testing the hardness and related mechanical propertie ytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentatior			Name of the person submitting the term e.g., jane.doe@example.com	
CHAMEO				indenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surfac		e.g., jane.doe@exai		
		j			Contact email for folio	uh		
					* Required field			
			https://w3id.org/emmo/domain/characterisation-					Cancel Sub
	>	> NeutronSpinEchoSpectroscopy	methodology/chameo#NeutronSpinEchoSpectroscopy	NeutronSpin		Class	Published	_
	>	> Nexafs	https://w3id.org/emmo/domain/characterisation-methodology/chameo#Nexafs		Class	Published		
			https://w3id.org/emmo/domain/characterisation-	https://w2id.prg/amma/domain/characterisation				
	>	NormalPulseVoltammetry	methodology/chameo#NormalPulseVoltammetry	NormalPulseV	oltammetry	Class	Published	



- CHADA: A framework that provides a standard set of concepts, metadata, and terminology for materials characterization
- CHADA Digital Tool:
 - Researchers document each characterization step using a simple web form
 - The tool automatically structures data in RDF format No manual semantic input required
 - Enhances compliance with FAIR principles (Findable, Accessible, Interoperable, Reusable)
 - It will be showcased in the AID4GREENEST project

Acknowledgement

Co-funded by the European Union

This work has been supported by the European Union under the Horizon Europe Programme

Grant Agreement 101091912

Thank you for your attention!

Yoav Nahshon Team Materials Informatics, Business Unit Manufacturing Processes Fraunhofer IWM